Monte Carlo Complexity of Global Solution of Integral Equations
نویسندگان
چکیده
منابع مشابه
Monte Carlo Complexity of Global Solution of Integral Equations
The problem of global solution of Fredholm integral equations is studied. This means that one seeks to approximate the full solution function (as opposed to the local problem, where only the value of the solution in a single point or a functional of the solution is sought). The Monte Carlo complexity is analyzed, i. e. the complexity of stochastic solution of this problem. The framework for thi...
متن کاملThe Monte Carlo Complexity of Fredholm Integral Equations
A complexity study of Monte Carlo methods for Fredholm integral equations is carried out. We analyze the problem of computing a functional p.(y), where y is the solution of a Fredholm integral equation y(s)= [ k(s,t)y(t)dt + f(s), seP", Jjm on the w-dimensional unit cube Im , where the kernel k and right-hand side / are given r times differentiable functions. We permit stochastic numerical meth...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولWavelet Monte Carlo Methods for the Global Solution of Integral Equations
We study the global solution of Fredholm integral equations of the second kind by the help of Monte Carlo methods. Global solution means that we seek to approximate the full solution function. This is opposed to the usual applications of Monte Carlo, were one only wants to approximate a functional of the solution. In recent years several researchers developed Monte Carlo methods also for the gl...
متن کاملQuasi-monte Carlo Methods for Integral Equations
In this paper, we establish a deterministic error bound for estimating a functional of the solution of the integral transport equation via random walks that improves an earlier result of Chelson generalizing the Koksma-Hlawka inequality for nite dimensional quadrature. We solve such problems by simulation, using sequences that combine pseudorandom and quasirandom elements in the construction of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Complexity
سال: 1998
ISSN: 0885-064X
DOI: 10.1006/jcom.1998.0471